

MIDI Sysex Messages on the DSP4000

This technote assumes familiarity with the MIDI System Exclusive Message format, and the use of
hex (hexadecimal) numbers. It largely applies to Orville and the 7000 family.

The system exclusive format used by the 4000 series is of the form;

0xF0 <EVENTIDE> <H4000> <id> <message_code> <lots-o-bytes> 0xF7

the 0xF0 and 0xF7 are standard MIDI for start of system exclusive, and end of system
exclusive. Note that 0xF0 (for example) is a hexadecimal representation of the decimal value 240,
while 0xF7 is decimal 247.

<EVENTIDE> is 0x1C (decimal 28)
<H4000> is 0x70 (decimal 112).
<id> is the device id number. If this is zero, all DSP4000s will listen to the message.
<message_code> tells us what message this is. The various messages are described below.
<lots-o-bytes> is the rest of the message. This data depends on the type of message. Not all

messages have 'lots-o-bytes'.

With many messages, a "byte" is actually two bytes. Since MIDI allows only 7 bits of data, we
split an 8 bit byte into two 4 bit nibbles and send the nibbles. The most significant nibble is sent

first.

Message codes:

SYSEXC_OK 0x00
Data: None. This message is returned by the DSP4000 in response to assorted commands. It

simply says "everything was ok with that last command".
Response: none

SYSEXC_KEYPRESS 0x01
Data: The next 4 bytes (8 nibbles) say what keys are to be pressed. There are 32 bits in the

message, one for each key. This allows for multiple keys being pressed at the same time.
See Appendix A for the individual key values.

Response: none

Technical Note #94

technot/techn94.4 Page 1 of 9 njr 1/31/2002

SYSEXC_USEROBJECT 0x02
Data: "lots-o-bytes" contains a userobject message, the description of which is beyond the scope
of this note. You can setup the DSP4000 to send out these messages when paramater changes are
made. These can then be recorded by a MIDI sequencer, and when replayed, will cause the control
changes to be duplicated. Every userobject message gets a response.
Response: none

SYSEXC_BANKCHANGE 0x03
Data:

First byte is 0 for internal, 1 for external.
Second byte is bank number. (0 thru 99)
These two bytes are broken into 4 nibbles. (ok, I know we don't need to this, but it makes
the software easy).

Response: none

SYSEXC_PROGRAM_DUMP_OLD 0x04
Obsolete - do not use

SYSEXC_SETUP_DUMP_OLD 0x05
Obsolete - do not use

Technical Note #94

technot/techn94.4 Page 2 of 9 njr 1/31/2002

SYSEXC_PROGRAM_WANT 0x06
Data: none.
Response: Upon receiving this message, the DSP4000 will send out a

SYSEXC_PROGRAM_DUMP message for the currently loaded program.

SYSEXC_SETUP_WANT 0x07
Data: none
Response: Upon receiving this message, the DSP4000 will send out a SYSEXC_SETUP_DUMP

message for the state of the unit.

SYSEXC_SIGFILE_DUMP 0x08
Data: a sigfile representing the currently loaded program. A sigfile is a human readable form of

a program. It is a series of text characters (Not split into nibbles) that form words,
numbers, and strings. (a string is some text bounded by '"'.) See Appendix B for more
information on sigfiles.

Upon receiving this message, the DSP4000 will encode the program, compile it, and load it. This
does take time. If there are errors, they will be reported on screen.

Response: none.

SYSEXC_SIGFILE_WANT 0x09
Data: none.
Response: Upon receiving this message, the DSP4000 sends a SYSEXC_SIGFILE_DUMP

message. The sigfile is heavily commented as to data type, name, min, maxs, etc. It does
take some time to output this message.

SYSEXC_SIGFILE_DUMP_REMOTE 0x0A
Data: Just like SYSEXC_SIGFILE_DUMP.
Response :if no error, will return a SYSEXC_OK message. If error, will return a

SYSEXC_ERROR message instead of putting a message on the screen. This message is
intended for remote editors.

Technical Note #94

technot/techn94.4 Page 3 of 9 njr 1/31/2002

SYSEXC_SIGFILE_WANT_QUICK 0x0B
Data: none
Response: Take the current program, convert to a sigfile, and send it back thru MIDI. Upon

receiving this message, the DSP4000 sends a SYSEXC_SIGFILE_DUMP_REMOTE
message. With this command, the sigfile has no comments.

SYSEXC_SIGDBASE_DUMP 0x0C
Data: A sigfile database message sent by the DSP4000. This message contains the information

that a remote editor might need to operate on sigfiles.
Note: This dump is very big (currently 160K). We also put delays to help things keep up. So, this

take a long time. Sending this message to the DSP4000 does nothing.

SYSEXC_ERROR 0x0D
Data: This message is returned by the DSP4000 in response to assorted commands. The message

indicates that an error occured with the last command. <lots-o-bytes> may contain a ascii
text error message (not split into nibbles)

SYSEXC_SIGDBASE_WANT 0x0E
Data: none.
Response: The DSP4000 outputs a SYSEXC_SIGDBASE_DUMP.

SYSEXC_FILES_DUMP 0x0F
Data: This is a set of files to replace the ones in the machine. The format of the data is a string of

bytes split into nibbles.
The first 8 nibbles tell the size of the block, ie how many bytes are actually loaded.
Next is the actual block to be loaded. This has a variable size.
At the end is two nibbles the form a 1 byte checksum. This byte added to all the bytes including

the size bytes should equal zero. If the sum does not equal zero, then the DSP4000 will prompt
you to send the dump again.

Response: none.

SYSEXC_FILES_WANT 0x10
Data: none
Response: Upon receiving this message, the DSP4000 will send out a SYSEXC_FILES_DUMP

message for the current presets.

SYSEXC_INTERNAL_DUMP 0x11
This message replaces the complete contents of the internal NV ram.
Data: The format of the data is the same as SYSEXC_FILES_DUMP.
Response: none

Technical Note #94

technot/techn94.4 Page 4 of 9 njr 1/31/2002

SYSEXC_INTERNAL_WANT 0x12
Data: none
Response: Upon receiving this message, the DSP4000 will send out a

SYSEXC_INTERNAL_DUMP message for the current presets.

SYSEXC_CARD_DUMP 0x13
Data: The contents of a memory card. The format is the same as
SYSEXC_SYSEXC_FILES_DUMP.
Response: none.

SYSEXC_CARD_WANT 0x14
Data: none
Response: Upon receiving this message, the DSP4000 will send out a SYSEXC_CARD_DUMP

message for the current card.

SYSEXC_PROGRAM_DUMP 0x15
Data: A program in binary form, the format being the same as SYSEXC_FILES_DUMP.
Response: none

SYSEXC_SETUP_DUMP 0x16
Data: This loads a system setup into the DSP4000, the format being the same as

SYSEXC_FILES_DUMP.
Response: none

SYSEXC_SCREEN_DUMP 0x17
Data: This is a dump of the current screen. The format of the data is a string of bytes split into

nibbles.
First 8 nibbles are screen width in pixels.
Next 8 nibbles are screen height in pixels.
Next 8 nibbles are screen dump size in bytes.
Next is screen bitmap as nibbles. This has a variable size given by the product of width (rounded

up to nearest 8) and height.
 At the end is two nibbles the form a 1 byte checksum. This byte added
 to all the bytes including the size bytes should equal zero.
Response: none

Technical Note #94

technot/techn94.4 Page 5 of 9 njr 1/31/2002

SYSEXC_SCREEN_WANT 0x18
Data: none
Response: Upon receiving this message, the DSP4000 will send out a

SYSEXC_SCREEN_DUMP message.

SYSEXC_INFO_DUMP 0x19
Data: This is a list of system information. It is in ASCII and is much like the information you get

when you press "information" under SETUP:service. At the begining of a page, there is:
**********(cr), followed by the information. For example:

 Name: System ROM(cr)
 Revision: 1.067(cr)
 Time: Wed Nov 23 10:58:32 1994(cr)
 Size: 524288(cr)
 There is a 0 at the end of the dump before the end of the SYSEX message. The DSP4000 does

nothing when receiving this message.
Response: none

SYSEXC_INFO_WANT 0x1A
Data: none
Response: Upon receiving this message, the DSP4000 will send out a SYSEXC_INFO_DUMP

message.

Technical Note #94

technot/techn94.4 Page 6 of 9 njr 1/31/2002

Appendix A - Key press values

Key values are a 32 bit word, with one bit corresponding to each key. This bit is zero is the key is
pressed, 1 if released. Because multiple keys could be pressed at the same time (or stuck down
due to faulty switches) more than one key bit could be zero at the same time.

FFFDFFFF17USER2
FDFFFFFF25USER1

FEFFFFFF24RIGHT >
FFFFFEFF8SELECT
FFFEFFFF16< LEFT

FFF7FFFF19PARAMETER
FFFFFFF73PATCH

FFFFF7FF11SETUP
F7FFFFFF27PROGRAM

FFFFFFFB2SOFT4
FFFFFBFF10SOFT3
FFFBFFFF18SOFT2

FBFFFFFF26SOFT1

FFFFFDFF9BYPASS/MUTE
FFFFFFFE0LEVELS

FFFFFFFFnoneno key

(Hexadecimal)

MIDI number when pressedBit # (0 is LSB)Key Name

Technical Note #94

technot/techn94.4 Page 7 of 9 njr 1/31/2002

FFFFFFEF4ENTER
FFFFFFDF5CXL

FFFFFFBF6DOWN
FFFFFF7F7UP

FFFFEFFF12MINUS
EFFFFFFF28DOT

FFEFFFFF20ZERO
FFFFDFFF13NINE
FFDFFFFF21EIGHT
DFFFFFFF29SEVEN
FFFFBFFF14SIX
FFBFFFFF22FIVE

BFFFFFFF30FOUR
FFFF7FFF15THREE
FF7FFFFF23TWO
7FFFFFFF31ONE

FFFFFFFFnoneno key

(Hexadecimal)

MIDI number when pressedBit # (0 is LSB)Key Name
Technical Note #94

technot/techn94.4 Page 8 of 9 njr 1/31/2002

Appendix B: Sigfile Format
A sigfile is an ascii text representation of a DSP4000 preset. Each entry represents a module, or
operator.
For each operator, there is the name of the operator type, a name for that particular operator, and
the data required by the operator. Each operator has a different data set, which can be different for
the different instances of the same operator.

A semicolon, ';' starts a comment field that bounded by the end of the line.

See the 4000 Operators Manual for information on the operators and their data sets. Sigfiles are
complex and should be viewed as being for experts only. As a result, further detail is considered
beyond the scope of this Technote.

Example:
Note that:
v the names of the operators are in capitals
v operator entries may be split across multiple lines
v The first module is always HEAD, the last is always TAIL.
v Text does not need to be in quotes if it contains no spaces.

HEAD Hed LMix-out RMix-out "Universal Matrix" "Matrix" 2 Setup-obj info-obj
MENUPAGE Setup "Operation" " Setup" 7 no-obj MatName-obj FactName-obj no-obj no-obj
MatKnob-obj WideKnob-obj
TEXTLINE MatName " Matrix Output:"
TEXTLINE no " "
TEXTKNOB MatKnob "%s" "shnam" 7 0.0000 "Normal L/R" "Reverse R/L" "MS - Left is Mid"
"MS - Right is Mid" "L to both" "R to both" "Mono sum"
TEXTLINE FactName " MS Stereo Width:"
KNOB WideKnob "%2.1f (1 is normal)" "shnam" 0.0000 2.0000 0.1000 1.0000
C_BOUND Sfact WideKnob-out 0.0000 1.0000
C_MULTIPLY negSfact Sfact-out -1.0000
C_BOUND Mbnd WideKnob-out 1.0000 2.0000
C_SUBTRACT Mfact 2.0000 Mbnd-out
C_SWITCH LfactL 7 MatKnob-out 1.0000 0.0000 Mfact-out Sfact-out 1.0000 0.0000 0.7070
C_SWITCH LfactR 7 MatKnob-out 0.0000 1.0000 Sfact-out Mfact-out 0.0000 1.0000 0.7070
C_SWITCH RfactL 7 MatKnob-out 0.0000 1.0000 Mfact-out negSfact-out 1.0000 0.0000 0.7070
C_SWITCH RfactR 7 MatKnob-out 1.0000 0.0000 negSfact-out Mfact-out 0.0000 1.0000 0.7070
MIX LMix Hed-left Hed-right LfactL-out LfactR-out
MIX RMix Hed-left Hed-right RfactL-out RfactR-out
TEXTBLOCK info 7 "M/S (mid/side) recording lets you air" "stereo events with complete mono
com-" "patibility. This setting decodes M/S" "recordings & controls their stereo" "width. It also
lets you fix mono and" "stereo routing." "Stereo in, stereo out."

TAIL JayRose

Technical Note #94

technot/techn94.4 Page 9 of 9 njr 1/31/2002

